First Order Linear Differential Equations

A First Order Linear Differential Equation is a first order differential equation which can be put in the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

where $P(x), Q(x)$ are continuous functions of x on a given interval. The above form of the equation is called the Standard Form of the equation. Example Put the following equation in standard form:

$$
x \frac{d y}{d x}=x^{2}+3 y
$$

- $\frac{d y}{d x}=x+\frac{3}{x} y$
- $\frac{d y}{d x}-\frac{3}{x} y=x$

First Order Linear Equations

To solve an equation of the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

- We multiply the equation by a function of x called an Integrating

Factor. $I(x)=e^{\int P(x) d x}$.

- $I(x)$ has the property that $\frac{d I(x)}{d x}=P(x) I(x)$
- Multiplying across by $I(x)$, we get an equation of the form $I(x) y^{\prime}+I(x) P(x) y=I(x) Q(x)$.
- The left hand side of the above equation is the derivative of the product $I(x) y$. Therefore we can rewrite our equation as $\frac{d[I(x) y]}{d x}=I(x) Q(x)$.
- Integrating both sides with respect to x, we get
$\int \frac{d[I(x) y]}{d x} d x=\int I(x) Q(x) d x$ or $I(x) y=\int I(x) Q(x) d x+C$ giving us a solution of the form

$$
y=\frac{\int I(x) Q(x) d x+C}{I(x)}
$$

First Order Linear Equations: Example 1

Example Solve the differential equation

$$
x \frac{d y}{d x}=x^{2}+3 y
$$

- We put the equation in standard form: $\frac{d y}{d x}-\frac{3}{x} y=x$.
- The integrating factor is given by $I(x)=e^{\int P(x) d x}$, where $P(x)$ is the coefficient of the y term : $I(x)=e^{\int \frac{-3}{x} d x}=e^{-3 \ln x}=\left(e^{\ln x}\right)^{-3}=x^{-3}$.
- Multiply the standard equation by $I(x)=x^{-3}$ to get

$$
x^{-3} \frac{d y}{d x}-\frac{3}{x^{4}} y=x^{-2} \quad \rightarrow \quad \frac{d\left[x^{-3} y\right]}{d x}=x^{-2}
$$

- Integrating both sides with respect to x, we get

$$
\int \frac{d\left[x^{-3} y\right]}{d x} d x=\int x^{-2} d x \quad \rightarrow \quad x^{-3} y=-x^{-1}+C
$$

- Hence our solution is

$$
y=-x^{2}+C x^{3}
$$

First Order Linear Equations: Example 2

Example Solve the initial value problem $y^{\prime}+x y=x, \quad y(0)=-6$.

- The equation is already in in standard form: $\frac{d y}{d x}+x y=x$.
- The integrating factor is given by $I(x)=e^{\int P(x) d x}$, where $P(x)$ is the coefficient of the y term $: I(x)=e^{\int x d x}=e^{x^{2} / 2}$.
- Multiply the standard equation by $I(x)=e^{x^{2} / 2}$ to get

$$
e^{x^{2} / 2} \frac{d y}{d x}+e^{x^{2} / 2} x y=x e^{x^{2} / 2} \quad \rightarrow \quad \frac{d\left[e^{x^{2} / 2} y\right]}{d x}=x e^{x^{2} / 2}
$$

- Integrating both sides with respect to x, we get

$$
\int \frac{d\left[e^{x^{2} / 2} y\right]}{d x} d x=\int x e^{x^{2} / 2} d x \quad \rightarrow \quad e^{x^{2} / 2} y=\int x e^{x^{2} / 2} d x+C
$$

- For the integral on the right, let $u=x^{2} / 2, d u=x d x$ and

$$
\int x e^{x^{2} / 2} d x=\int e^{u} d u=e^{u}=e^{x^{2} / 2}
$$

- We get $e^{x^{2} / 2} y=e^{x^{2} / 2}+C \quad \rightarrow y=1+C e^{-x^{2} / 2}$.
$\rightarrow y(0)=-6 \rightarrow 1+C=-6 \rightarrow C=-7 \rightarrow y=1-7 e^{-x^{2} / 2}$

Old Exam Question: Q 13 Exam 2 Spring 2008

Solve the initial value problem $y^{\prime}=\frac{2 x-y}{1+x}, \quad y(1)=2$.

- We first rewrite the equation as: $y^{\prime}=\frac{2 x}{1+x}-\frac{y}{1+x}$
- which allows us to rewrite it in standard form as $y^{\prime}+\frac{y}{x+1}=\frac{2 x}{x+1}$.
- $P(x)=\frac{1}{x+1}$ and $Q(x)=\frac{2 x}{x+1}$.
- The integrating factor is given by

$$
I(x)=e^{\int P(x) d x}=e^{(\ln |x+1|)}=|x+1|=\left[\begin{array}{cl}
x+1 & \text { if } x+1>0 \\
-(x+1) & \text { if } x+1<0
\end{array}\right.
$$

- Multiply the standard equation by $I(x)= \pm(x+1)$ to get

$$
(x+1) \frac{d y}{d x}+y=2 x \quad \text { or } \quad \frac{d(x+1) y}{d x}=2 x
$$

- Integrating both sides with respect to x, we get

$$
\int \frac{d[(x+1) y]}{d x} d x=\int 2 x d x \quad \rightarrow \quad(x+1) y=x^{2}+C
$$

- Dividing across by $(x+1)$ we get $y=\frac{x^{2}+C}{x+1}$
$\Rightarrow y(1)=2 \rightarrow \frac{1+C}{2}=2 \rightarrow C=3 \rightarrow \quad y=\frac{x^{2}+3}{x+1}$

